
TCPdump Basics

What we will cover:
What is/are TCPdump/WinDump?
Why use TCPdump?
Installation of TCPdump on Unix/Windows
It’s installed, now what?
Changing the amount of data collected
Reading TCPdump/WinDump Output
TCP Flags in TCPdump/WinDump
Absolute & Relative Sequence Numbers
Dumping TCPdump/WinDump output in hexadecimal format
TCPdump ManPage

TCPdump is a tool we can use for packet analysis. We will not use ethereal (wireshark)
because it does “too much” for us. TCPdump will keep everything “raw” and that’s the way
we like it!

*note: it is expected that the reader will try out all the TCPdump/WinDump commands listed
in the lesson on their own computers as well as the practical exercises. You have to actually
run the commands to learn how to use the tool.

What is/are TCPdump/WinDump?
TCPdump, and its cousin WinDump, is software that allows us to see inside the traffic
activity that occurs on a network. TCPdump is a Unix tool used to gather data from the
network, decipher the bits, and display the output in a human readable format (granted it does
take a little bit of instruction to learn the TCPdump language).

Why use TCPdump?
Network traffic travels in data packets; each data packet contains the information that it
needs to travel across the network. This information is contained in a TCP header. A TCP
header will contain the destination and source address, state information, and protocol
identifiers. The rest of the packet contains the data that is being sent. Devices that are
responsible for routing read the information in these packets and send them to their correct
destination. Sniffing is a process that passively monitors and captures these packets.
TCPdump is a packet-sniffing tool that is used by network administrators to sniff and analyze
traffic on a network. A couple of reasons for sniffing traffic on a network would be to verify
connectivity between hosts, or to analyze the traffic that is traversing the network.

TCPdump and WinDump are available at:
http://www.TCPdump.org/ & http://WinDump.polito.it/

To install for Unix/Linux:
Most Linux distributions install a version of TCPdump as part of a standard operating system
install. Of course, this depends on the options you choose during the installation. If a custom

http://www.tcpdump.org/
http://windump.polito.it/

install is chosen, then it is possible that this package will not be available until you install it
manually.

Installing TCPdump from the RPM:
To see if you have TCPdump installed on your system, type the following command from a
Linux shell: rpm –q TCPdump

This should show you some output similar to the following (it may look slightly different
depending on the version you have installed):

[root@tcp4sec root]# rpm -q TCPdump
TCPdump-3.7.2-1.9.1

(Note: rpm represents RedHat Package Management, the –q option represents query. The –i
option represents install, the –v is for verbose and the –h is to display status in the form of a
hash mark. You can find more information regarding the use of rpm by reading the rpm man
page.)

If you do not have TCPdump installed you should see something like this:

[root@tcp4sec root]# rpm -q TCPdump
package TCPdump is not installed

If the package is not installed, you can get the RPM from the RedHat CD. This is probably
the easiest method of installation, however, installation from the source will be covered as
well. First, verify that the libpcap rpm is installed. If it is not, then install libpcap
rpm –ivh libpcap-0.7.2-1.i386.rpm
then…
rpm –ivh TCPdump-3.7.2-1.9.1.rpm

This will install the packages and the you’ll be ready to use TCPdump.

Installing TCPdump using apt-get
If your distribution has apt-get you can use apt-get to install TCPdump. Apt-get is nice in
that will usually install dependencies for you which is always a plus.

Apt-get install tcpdump

Or maybe

Apt-get upgrade tcpdump (if you already have tcpdump installed and just want to
upgrade)

Installing TCPdump from the source files:
If you do not have access to the operating system CD’s; an alternative way to install
TCPdump is to point a web browser to http://www.TCPdump.org and find the most current
version. It is important to note that libpcap must be installed prior to the installation of
TCPdump. This is a library file, “which provides a packet filtering mechanism based on the

BSD packet filter (BPF).” (http://freshmeat.net/projects/libpcap/) TCPdump will not function
without it. libpcap can also be found on http://www.TCPdump.org. Download the
appropriate files and save them to a temporary directory. Change to the temporary directory
and type:

tar –zxvf libpcap-0.8.3.tar.gz

after this extracts completely, type

tar –zxvf TCPdump-3.8.3.tar.gz

*Note: tar is an archiving program designed to store and extract files from an archive file
known as a tarfile.

This will unzip the package and unpack it in one smooth operation. After you have
completed this step, you will see the TCPdump-3.8.3 and the libpcap-0.8.3 directories. First,
change to the libpcap-0.7.2 directory. As each process finishes, type:

./configure
./make or make
./make install or make install

(Note: You must be root or have root privileges to run ./make install)

Repeat this process from within the TCPdump-3.8.3 directory. This will install libpcap and
TCPdump. You should be ready to use the program at this point.

To install for Windows:
Installing WinDump for windows is much easier.
You have two choices, if you already have WinPcap installed you can just download the
WinDump executable and run it from the command line. Or, you can download the installer
executable that will install WinPcap for you as well. Simple enough.

OK I got it installed, now what?
On most Unix/Linux, you will need root access to run TCPdump because reading packets
requires access to devices accessible to root only. On Windows, if you got it installed, you
should be good to go. To run TCPdump/WinDump (for now on TCPdump and WinDump
will be used interchangeably unless otherwise noted) just type:

TCPdump

[root@TCPIP4Sec root]# TCPdump
TCPdump: listening on eth0

0 packets received by filter
0 packets dropped by kernel

http://www.tcpdump.org/

WinDump

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump.exe
WinDump.exe: listening on \Device\NPF_{11FB32C3-7A19-4106-949D-
6824D157C848}

By default, this reads all the traffic from the default network interface and spits it all the
output to the console. Unless you can read really, really fast and have a really good memory
this won’t be the preferred output method for you. Luckily the programmers included some
command line options to change the default behavior of the program.

To check out the list of interfaces available (Windows) type:

WinDump –D

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -D
1.\Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75} (Belkin 11Mbps
Wireless Notebook Network Adapter (Microsoft's Packet Scheduler))
2.\Device\NPF_{11FB32C3-7A19-4106-949D-6824D157C848} (Intel(R) PRO/100 VE
Network Connection (Microsoft's Packet Scheduler))
3.\Device\NPF_{886AFBE2-7B11-4F68-AE41-0D357F392C2A} (VMware Virtual
Ethernet Adapter)
4.\Device\NPF_{60315F4B-0F96-4D15-9F09-62AFF391E1A7} (VMware Virtual
Ethernet Adapter)

For Unix/Linux do you an

ifconfig

As root to see the available interfaces.

To select an interface type:

WinDump –i 1

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -i 1
WinDump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}

TCPdump –i eth0

[root@TCPIP4Sec root]# TCPdump -i eth0
TCPdump: listening on eth0

0 packets received by filter
0 packets dropped by kernel

To select the type of traffic you want to watch you can just specify after your interface. For
now we want to see TCP traffic.

[root@TCPIP4Sec root]# TCPdump -i eth0 tcp

TCPdump: listening on eth0

0 packets received by filter
0 packets dropped by kernel

OR

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -i 1 tcp
WinDump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}
20 packets received by filter
0 packets dropped by kernel

Well that works ok if you just want to see TCP traffic, but as we progress we might want to
look at one specific thing or a number of things that force us to create a really long filter.
Luckily, someone thought of this and we don’t have to type our filter every time if we don’t
want to. We can simply type it into a text file and just call it with the –F filename option of
TCPdump. This way we only have to create it once, cut and paste it and we don’t have to
worry about fat fingering it next time we want to do the same type of analysis

[root@TCPIP4Sec root]# TCPdump -i eth0 -F myfilter.txt
TCPdump: listening on eth0

0 packets received by filter
0 packets dropped by kernel
[root@TCPIP4Sec root]# more myfilter.txt
tcp
[root@TCPIP4Sec root]#

Or

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -i 1 -F
myfilter.txt
WinDump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}

21 packets received by filter
0 packets dropped by kernel

Ok so we have handled the filter problem but we still have all this great data whizzing by us.
TCPdump gives us the option to dump the records into binary format to read later with
TCPdump. We do this using the –w filename option.

[root@TCPIP4Sec root]# TCPdump -i eth0 -F myfilter.txt -w LSOoutput
TCPdump: listening on eth0

118 packets received by filter
0 packets dropped by kernel

Or

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -i 1 -F
myfilter.txt -w LSOoutput
WinDump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}

4 packets received by filter
0 packets dropped by kernel

And to read that file back in we use the –r filename option, gee that makes sense; read = –r
& write = –w.

[root@TCPIP4Sec root]# TCPdump -i eth0 -F myfilter.txt -r LSOoutput
09:26:25.194409 192.168.64.128.32815 > 66-193-231.87.dimenoc.com.http: S
1706723745:1706723745(0) win 5840 <mss 1460,sackOK,timestamp 308912
0,nop,wscale 0> (DF)
---EDITED-------
[root@TCPIP4Sec root]#

Or

C:\Documents and Settings\NoOne\Desktop\HackerCLI>WinDump -i 1 -F
myfilter.txt -r LSOoutput
16:42:21.831154 IP TCPIP4Sec.54473 > 192.168.1.1.5678: F
2881894966:2881894966(0) ack 28 06171 win 17520 (DF)
16:42:22.534859 IP 192.168.1.1.5678 > TCPIP4Sec.54473: F 1:1(0) ack ---
EDITED--------
C:\Documents and Settings\NoOne\Desktop\HackerCLI>

Changing the amount of data collected

TCPdump/WinDump has a default snapshot length of the size of datagram it collects; 68
bytes. Depending on what you are doing this may not be adequate, so they give us the option
to change it. TCPdump does not collect the entire datagram. This is because of volume
concerns and most of the time we are concerned with the headers and not so much the rest of
the datagram. With a 68 byte header you get the framer header (14 bytes), the IP header (20
bytes), the TCP header (20 bytes), and the TCP data (14 bytes); basically the entire Ethernet
header. What you don’t get in all of this is the complete payload. To alter the default
snaplen you use the TCPdump –s length command where length is the desired number of
bytes to be collected. If you want to capture an entire Ethernet frame, not including the
trailer, use TCPdump –s 1514. This will capture the 14 byte header and the maximum
transmission unit length for Ethernet of 1500 bytes.

Let’s see an example:
C:\Documents and Settings\NoOne\Desktop\HackerCLI>windump -i 1 –s 1514
windump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C 917801DBFC75}
19:57:01.956298 IP TCP4Sec.1069 > 63-123-56-242.static.web.com.110: F
1009274661:10092 74661(0) ack 4089055151 win 16560 (DF)
19:57:02.842834 IP TCP4Sec.1103 > dnspool1.skynet.be.53: 229+ PTR?
242.56.123.63.in-addr.arpa. (44)

13 packets received by filter
0 packets dropped by kernel

Reading TCPdump/WinDump Output

Ok, so far we have learned how to grab the data off the wire now lets learn how to read the
output! TCPdump has a specific format and you will have to learn how to read it. But don’t
worry, it’s pretty easy to understand. Each protocol has its own standard output. Since this
lesson is about TCP, we will cover the TCP output format.

Here is an example record:

20:08:41.313149 rootwars.org.1086 > 66.102.9.104.80: S
1192278531:1192278531(0) win 1638

- 20:08:41.313149 This is the time stamp in the format of two digits for hours, two
digits for minutes, two digits for seconds, and six digits for fractional parts of a
second.

- rootwars.org This is the source host name. The default behavior is to resolve the
hostname but you can turn it off with the TCPdump –n option. If you don’t see a
DNS name the IP will appear. Something like IP COMPUTERNAME.

- 1086 This is the source port number or port service.
- > This is a marker to indicate direction flow going from source to destination.
- 66.102.9.104 This is the desintation host name or IP address.
- 80 This is the desination port number or maybe it will be translated ad HTTP.
- S This is the TCP Flag. The S represents a SYN Flag (see the next section).
- 1192278531:1192278531(0) This is the beginning TCP sequence number: ending

TCP sequence number (data bytes). Sequence nubers are used by TCP to order the
data received. The initial sequence number (ISN) is selected as a unique number to
mark the first byte of data. The ending sequence number is the beginning sequence
plus the number of bytes being sent with this TCP segment. In this case there were
zero bytes sent, the beginning and ending sequence numbers are the same.

- win 1638 This is the receiving buffer size in bytes of rootwars.org for this connection.

TCP Flags in TCPdump/WinDump

TCP Flag Flag Representation Flag Meaning

SYN

S
Session establishment
request which is the first
part of any TCP connection
(3 way handshake).

ACK

ack

Ack flag is generally used
to acknowledge the receipt
of data from the sender.
Might be in conjunction
with other flags.

FIN

F

Fin flag is generally used to
indicate the sender’s

 intention to gracefully
terminate the sending host’s
connection to the receiving
host.

RESET

R

Reset flag is generally used
to indicate the sender’s
intention to immediately
abort the existing
connection wit the receiving
host.

PUSH

P

Push flag is generally used
to immediately “push” data
from the sending host to the
receiving host. This is for
applications like telnet
where response time is a
primary concern.

URGENT

urg

Urgent flag is generally
used to mean that there is
“urgent” data that takes
precedence over other data.

Placeholder

.

If the connections does not
have a SYN, FIN, RESET,
or PUSH flag set, a
placeholder (a period: .)
will be found after the
destination port

Absolute & Relative Sequence Numbers

Sequence numbers are associated only with TCP output. TCP sequence numbers are used by
the destination host to reassemble TCP traffic that arrives. Remember that TCP guarantees
order where UDP does not. If TCP gets a sequence number out of order, it knows to resend
the packet. These sequence numbers are decimal representations of the 32 bit field. This
could get a little confusing to read so TCPdump helps us out by converting the absolute
sequence number (the decimal representation of the long number) to a relative sequence
numbers after the two hosts exchange their Initial Sequence Numbers (ISN).

Lets look at an example (timestamps have been removed)

C:\Documents and Settings\NoOne\Desktop\HackerCLI>windump -i 1 tcp
windump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}
TCP4SEC.2229 > 66-193-231-87.dimenoc.com.80: S 781505672:781505672(0) win
16384 <mss 1460> (DF)

IP 66-193-231-87.dimenoc.com.80 > TCP4SEC.2229: S 4106656209:4106656209(0)
ack 781505673 win 5840 <mss 1402> (DF)
IP TCP4SEC.2229 > 66-193-231-87.dimenoc.com.80: . ack 1 win 16824 (DF)
IP TCP4SEC.2229 > 66-193-231-87.dimenoc.com.80: P 1:415(414) ack 1 win
16824 (DF)

Ok let’s explain this mess above and hopefully understand absolute and relative sequence
numbers when we are done. The first two large numbers in bold represent the large absolute
ISNs (781505672:781505672 & 4106656209:4106656209). It goes from client to server,
then server back to client. We can also see the server’s ack of the client’s ISN (the
781505673 in bold). The third line has a bold 1, this is the first relative sequence number that
TCPdump has gracefully inserted for us. This means that the client has acknowledged the
previous SYN from the server with an ISN of 4106656209. The 1 acknowledgement means
that the next expected relative byte to be received by the client is byte 1 or 4106656210 in
absolute sequence numbers. The final line has the numbers 1 and 415 in bold to indicate that
relative to the absolute sequence number of 781505672, the 1st byte through but not including
the 415th byte are sent from client to server for a total of 414 bytes.

While this might not explain exactly what absolute and ISN sequence numbers are. It did
hopefully explain just what the heck the funny 1:415(414) stuff means. IF you would prefer
to keep the sequence numbers in absolute form use the TCPdump –S option.

If you are still confused on absolute sequence numbers, google.com is your friend!

Dumping TCPdump/WinDump output in hexadecimal format

TCPdump does not display all the fields of the captured data. Some fields are not available
by default. If you want to see these fields, like the IP header that stores the length of the IP
Header, you’ll have to dump the output in Hexadecimal. The TCPdump –x option will
dump the entire datagram with the default snaplen in hex. To interpret the TCPdump hex
output you will need some extra studying and resources I will not be covering. The easiest
thing to do would be to open the binary files with ethereal. Don’t forget that you might need
to change your snaplen to get that data you are trying to see with Ethereal as well as using the
–w option to write it to a binary file.

Here’s an example:

C:\Documents and Settings\NoOne\Desktop\HackerCLI>windump -i 1 -x
windump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}
18:43:52.867083 IP TCP4SEC.2145 > pop.noware.net.110: F
263898465:263898465(0) ack 5 13332375 win 16795 (DF)
 4500 0028 5bdd 40EE 8006 b35c c0a8 0164
 2671 0319 0861 006e 0fba c561 1e98 d497
 5A41 419b b187 0000
18:43:53.682818 IP TCP4SEC.1038 > dnspool1.bignet.us.53: 111+ PTR?
25.3.113.38.in-addr.arpa. (42)
 4500 0046 5bde 0000 8011 56b9 c0a8 0164
 c3ee 0215 040e 0035 0032 5cd9 006f 0100
 0001 0000 0000 70C4 0232 3501 3303 3131
 3302 3338 0769 6e2d 6164 6472 EEA7 7270

 6100 000c 0001 3338

And dumping the output to file and opening with Ethereal

C:\Documents and Settings\NoOne\Desktop\HackerCLI>windump -i 1 -x -w
hexoutput
windump: listening on \Device\NPF_{F8C4038F-1462-4A50-BD0C-917801DBFC75}

This dumps the output to a binary file, now let’s load it into Ethereal.

Now we can see everything!

The TCPdump MAN page
--
WinDump - dump traffic on a network

SYNOPSIS

WinDump [-aBdDeflnNOpqRStvxX] [-c count] [-F file]

 [-i interface] [-m module] [-r file]

 [-s snaplen] [-T type] [-w file]

 [-E algo:secret] [expression]

DESCRIPTION

TCPdump prints out the headers of packets on a network interface that match the boolean
expression.

Under SunOS with nit or bpf: To run TCPdump you must have read access to /dev/nit or
/dev/bpf*. Under Solaris with dlpi: You must have read/write access to the network pseudo
device, e.g. /dev/le. Under HP-UX with dlpi: You must be root or it must be installed setuid
to root. Under IRIX with snoop: You must be root or it must be installed setuid to root.
Under Linux: You must be root or it must be installed setuid to root. Under Ultrix and
Digital UNIX: Once the super-user has enabled promiscuous-mode operation using
pfconfig(8), any user may run TCPdump. Under BSD: You must have read access to
/dev/bpf*. Under Win32: You must have installed WinPcap.

OPTIONS

-a Attempt to convert network and broadcast addresses to names.

-c Exit after receiving count packets.

-d Dump the compiled packet-matching code in a human readable form to standard
output and stop.

-dd Dump packet-matching code as a C program fragment.

-ddd Dump packet-matching code as decimal numbers (preceded with a count).

-e Print the link-level header on each dump line.

-E Use algo:secret for decrypting IPsec ESP packets. Algorithms may be des-cbc, 3des-
cbc, blowfish-cbc, rc3-cbc, cast128-cbc, or none. The default is des-cbc. The ability to
decrypt packets is only present if TCPdump was compiled with cryptography enabled. secret

the ascii text for ESP secret key. We cannot take arbitrary binary value at this moment. The
option assumes RFC2406 ESP, not RFC1827 ESP. The option is only for debugging
purposes, and the use of this option with truly `secret' key is discouraged. By presenting
IPsec secret key onto command line you make it visible to others, via ps(1) and other
occasions.

-f Print `foreign' internet addresses numerically rather than symbolically (this option is
intended to get around serious brain damage in Sun's yp server --- usually it hangs forever
translating non-local internet numbers).

-F Use file as input for the filter expression. An additional expression given on the
command line is ignored.

-i Listen on interface. If unspecified, TCPdump searches the system interface list for the
lowest numbered, configured up interface (excluding loopback). Ties are broken by choosing
the earliest match. In Windows interface can be the name of the adapter, or its number (the
one reported by the -D flag).

On Linux systems with 2.2 or later kernels, an interface argument of ``any'' can be used to
capture packets from all interfaces. Note that captures on the ``any'' device will not be done
in promiscuous mode.

-l Make stdout line buffered. Useful if you want to see the data while capturing it. E.g.,
``TCPdump -l | tee dat'' or ``TCPdump -l > dat & tail -f dat''.

-n Don't convert addresses (i.e., host addresses, port numbers, etc.) to names.

-N Don't print domain name qualification of host names. E.g., if you give this flag then
TCPdump will print ``nic'' instead of ``nic.ddn.mil''.

-m Load SMI MIB module definitions from file module. This option can be used several
times to load several MIB modules into TCPdump.

-O Do not run the packet-matching code optimizer. This is useful only if you suspect a
bug in the optimizer.

-p Don't put the interface into promiscuous mode. Note that the interface might be in
promiscuous mode for some other reason; hence, `-p' cannot be used as an abbreviation for
`ether host {local-hw-addr} or ether broadcast'.

-q Quick (quiet?) output. Print less protocol information so output lines are shorter.

-r Read packets from file (which was created with the -w option). Standard input is used
if file is ``-''.

-s Snarf snaplen bytes of data from each packet rather than the default of 68 (with
SunOS's NIT, the minimum is actually 96). 68 bytes is adequate for IP, ICMP, TCP and UDP
but may truncate protocol information from name server and NFS packets (see below).
Packets truncated because of a limited snapshot are indicated in the output with ``[|proto]'',
where proto is the name of the protocol level at which the truncation has occurred. Note that
taking larger snapshots both increases the amount of time it takes to process packets and,
effectively, decreases the amount of packet buffering. This may cause packets to be lost. You
should limit snaplen to the smallest number that will capture the protocol information you're
interested in. Setting snaplen to 0 means use the required length to catch whole packets.

-T Force packets selected by "expression" to be interpreted the specified type. Currently
known types are cnfp (Cisco NetFlow protocol), rpc (Remote Procedure Call), rtp (Real-
Time Applications protocol), rtcp (Real-Time Applications control protocol), snmp (Simple
Network Management Protocol), vat (Visual Audio Tool), and wb (distributed White Board).

-R Assume ESP/AH packets to be based on old specification (RFC1825 to RFC1829). If
specified, TCPdump will not print replay prevention field. Since there is no protocol version
field in ESP/AH specification, TCPdump cannot deduce the version of ESP/AH protocol.

-S Print absolute, rather than relative, TCP sequence numbers.

-t Don't print a timestamp on each dump line.

-tt Print an unformatted timestamp on each dump line.

-v (Slightly more) verbose output. For example, the time to live, identification, total
length and options in an IP packet are printed. Also enables additional packet integrity
checks such as verifying the IP and ICMP header checksum.

-vv Even more verbose output. For example, additional fields are printed from NFS reply
packets.

-vvv Even more verbose output. For example, telnet SB ... SE options are printed in full.
With -X telnet options are printed in hex as well.

-w Write the raw packets to file rather than parsing and printing them out. They can later
be printed with the -r option. Standard output is used if file is ``-''.

-x Print each packet (minus its link level header) in hex. The smaller of the entire packet
or snaplen bytes will be printed.

-X When printing hex, print ascii too. Thus if -x is also set, the packet is printed in
hex/ascii. This is very handy for analysing new protocols. Even if -x is not also set, some
parts of some packets may be printed in hex/ascii.

Win32 specific extensions

-B Set driver's buffer size to size in KiloBytes. The default buffer size is 1 megabyte (i.e
1000). If there is any loss of packets during the capture, the suggestion is to increase the
kernel buffer size by means of this switch, since the dimension of the driver’s buffer
influences heavily the capture performance.

-D Print the list of the interface cards available on the system. For every network adapter,
this switch returns the number, the name and the description. The user can start the capture
on a specific adapter typing ‘WinDump –i name’ or ‘WinDump –i number’. If the machine
has more than one network adapter, WinDump without parameters starts on the first network
interface available on the system.

--

	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Win32 specific extensions

